Skip to main content
Retour
Krypton
Click and drag to move the molecule
Krypton
Click and drag to move the molecule
Kr
Krypton

Physical Properties

Under solid (grey), liquid (blue) and vapor states (white) along the equilibrium curves

  • General properties
  • Solid phase
  • Liquid Phase
  • Gas Phase
(P)
log(P)
Download
  • Molecular weight
    83.798
    g/mol
  • Content in air
    1.14
    ppm
    1.14 ppm 1.14E-4 vol/% 1.14E-6 vol/vol

Critical Point

  • Temperature
    - 63.67
    °C
    - 82.606 °F 209.48 K
  • Pressure
    55.25
    bar
    5.525E6 pa 801.3332 lbf/in2 54.5275 Atm 5525 Kpa 4.1441E4 mmHg
  • Density
    909.21
    kg/m³
    56.76 lb/ft³

Triple Point

  • Temperature
    - 157.38
    °C
    - 251.284 °F 115.77 K
  • Pressure
    7.32E-1
    bar
    7.32E4 pa 10.6168 lbf/in2 7.2243E-1 Atm 73.2 Kpa 549.0467 mmHg
Pressure 1.013 bar
  • Melting point
    - 157.37
    °C
    - 251.266 °F 115.78 K
  • Latent heat of fusion (at melting point)
    19.572
    kJ/kg
    8.4201 Btu/lb 4.6778 kcal/kg
  • Solid density
    /
Pressure 1.013 bar
  • Liquid density
    2416.7
    kg/m³
    150.8693 lb/ft³
  • Boiling point
    - 153.42
    °C
    - 244.156 °F 119.73 K
  • Latent heat of vaporization (at boiling point)
    107.06
    kJ/kg
    46.0584 Btu/lb 25.588 kcal/kg
Pressure1.013barTemperature
  • Compressibility factor Z
    9.9725E-1
    9.9768E-1
    9.9793E-1
  • Cp/Cv ratio γ
    1.6734
    1.6726
    1.6722
  • Dynamic viscosity
    2.3219E-4
    Po
    23.219 µPa.s 2.3219E-5 PA.S 1.5602E-5 lb/ft/s
    2.4375E-4
    Po
    24.375 µPa.s 2.4375E-5 PA.S 1.6379E-5 lb/ft/s
    2.5132E-4
    Po
    25.132 µPa.s 2.5132E-5 PA.S 1.6888E-5 lb/ft/s
  • Gas density at boiling point
    8.816
    kg/m³
    5.5036E-1 lb/ft³
    8.816
    kg/m³
    5.5036E-1 lb/ft³
    8.816
    kg/m³
    5.5036E-1 lb/ft³
  • Gas density
    3.748
    kg/m³
    2.3398E-1 lb/ft³
    3.5514
    kg/m³
    2.2171E-1 lb/ft³
    3.4314
    kg/m³
    2.1421E-1 lb/ft³
  • Heat capacity at constant pressure Cp
    2.495E-1
    kJ/(kg.K)
    5.9632E-2 BTU/lb∙°F 249.499 J/kg∙K 5.9632E-2 kcal/kg∙K
    2.4931E-1
    kJ/(kg.K)
    5.9586E-2 BTU/lb∙°F 249.308 J/kg∙K 5.9586E-2 kcal/kg∙K
    2.492E-1
    kJ/(kg.K)
    5.956E-2 BTU/lb∙°F 249.2 J/kg∙K 5.956E-2 kcal/kg∙K
  • Heat capacity at constant volume Cv
    1.4911E-1
    kJ/(kg.K)
    3.5637E-2 BTU/lb∙°F 149.105 J/kg∙K 3.5637E-2 kcal/kg∙K
    1.4905E-1
    kJ/(kg.K)
    3.5623E-2 BTU/lb∙°F 149.045 J/kg∙K 3.5623E-2 kcal/kg∙K
    1.4902E-1
    kJ/(kg.K)
    3.5617E-2 BTU/lb∙°F 149.021 J/kg∙K 3.5617E-2 kcal/kg∙K
  • Liquid (at boiling point)/gas equivalent
    644.8
    mol/mol
    680.49
    mol/mol
    704.29
    mol/mol
  • Solubility in water
    /
    5.696E-5
    mol/mol
    4.512E-5
    mol/mol
  • Specific gravity
    2.9
    2.9
    2.9
  • Specific volume
    2.668E-1
    m³/kg
    4.2737 ft³/lb
    2.816E-1
    m³/kg
    4.5108 ft³/lb
    2.914E-1
    m³/kg
    4.6678 ft³/lb
  • Thermal conductivity
    8.652
    mW/m∙K
    5.0024E-3 Btu/ft/h/°F 7.4444E-2 cal/hour∙cm∙°C 2.0679E-5 cal/s∙cm∙°C 8.652E-3 W/(m∙K)
    9.082
    mW/m∙K
    5.251E-3 Btu/ft/h/°F 7.8144E-2 cal/hour∙cm∙°C 2.1707E-5 cal/s∙cm∙°C 9.082E-3 W/(m∙K)
    9.363
    mW/m∙K
    5.4135E-3 Btu/ft/h/°F 8.0561E-2 cal/hour∙cm∙°C 2.2378E-5 cal/s∙cm∙°C 9.363E-3 W/(m∙K)
  • Vapor pressure
    /
    /
    /
Kr
Krypton

Liquid / Gas Volumes

Calculate a liquid or gas volume or a mass

Liquid Phase

At boiling point at 1.013 bar

m3(Volume)
kg(Mass)

Gas Phase

at 1.013 bar and boiling point

m3(Volume)
kg(Mass)
Kr
Krypton

Applications

Examples of uses of this molecule in Industry and Healthcare

Glass

Krypton increases acoustic and thermal isolation performance of double-glazed windows.

Glass

Photonics

Krypton is used to produce high-intensity, long-life lamps. It is used to fill halogen sealed-beam headlights.

Photonics

Electronic components

Krypton produces wavelengths varying as a function of operating conditions for halogens in "excimer" lasers.

Electronic components
Kr
Krypton

Safety

Information to safely use this molecule

  • Major hazards
  • Material compatibility

Odor

none

Metals

  • Aluminium
    Satisfactory
  • Brass
    Satisfactory
  • Monel
    Satisfactory
  • Copper
    Satisfactory
  • Ferritic Steel
    Satisfactory
  • Stainless steel
    Satisfactory
  • Zinc
    Satisfactory
  • Titanium
    no data

Plastics

  • Polytetrafluoroethylene
    Satisfactory
  • Polychlorotrifluoroethylene
    Satisfactory
  • Polyvinylidene fluoride
    Satisfactory
  • Polyvinyl chloride
    Satisfactory
  • Ethylene tetrafluoroethylene
    Satisfactory
  • Polycarbonate
    Satisfactory
  • Polyamide
    Satisfactory
  • Polypropylene
    Satisfactory

Elastomers

  • Buthyl (isobutene- isoprene) rubber
    Satisfactory
  • Nitrile rubber
    Satisfactory
  • Chloroprene
    Satisfactory
  • Chlorofluorocarbons
    Satisfactory
  • Silicon
    Satisfactory
  • Perfluoroelastomers
    Satisfactory
  • Fluoroelastomers
    Satisfactory
  • Nitrile rubber
    Satisfactory
  • Neoprene
    Satisfactory
  • Polyurethane
    Satisfactory
  • Ethylene-Propylene
    Satisfactory

Lubricants

  • Hydrocarbon based lubricant
    Satisfactory
  • Fluorocarbon based lubricant
    Satisfactory

Materials compatibility

Recommendations : Air Liquide has gathered data on the compatibility of gases with materials to assist you in evaluating which materials to use for a gas system. Although the information has been compiled from what Air Liquide believes are reliable sources (International Standards: Compatibility of cylinder and valve materials with gas content; Part 1- Metallic materials: ISO11114-1 (March 2012), Part 2 - Non-metallic materials: ISO11114-2 (April 2013), it must be used with extreme caution and engineering judgement. No raw data such as these can cover all conditions of concentration, temperature, humidity, impurities and aeration. It is therefore recommended that this table is only used to identify possible materials for applications at high pressure and ambient temperature. Extensive investigation and testing under the specific conditions of use need to be carried out to validate a material selection for a given application. Contact the regional Air Liquide team for expertise service.

Kr
Krypton

Learn More

General information

More information

Krypton was discovered in 1898 by Sir William Ramsay and Moris William Travers. Its name comes from the Greek "κρυπτόν" (kryptos) meaning "hidden". Neon, krypton and xenon are known as "rare" gases, since combined they only account for one thousandth of the air which surrounds us. These gases are colorless and tasteless. They are so inert that they do not react and can only be combined with other chemical substances with great difficulty. Their extreme inertness makes them very valuable for certain applications.